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Abstraet. This paper provides an experimental implementation and verification of a hybrid (mixed discrete state/
continuous state) controller for semi-autonomous and autonomous underwater vehicles in which the missions imply
multiple task robot behavior. An overview of some of the missions being considered for this rapidly developing
technology is mentioned including environmental monitoring, underwater inspection, geological survey as well as
military missions in mine countermeasures.

The functionalities required of such vehicles and their relation te ‘intelligent control’ technology is discussed. In
particular, the use of Prolog as a computer language for the specification of the discrete event system (DES) aspects
of the mission control is proposed. The connections between a Prolog specification and the more common Petri Net
graphical representation of a DES are made. Links are made between activation commands, transitioning signals,
and the continuous state dynamic control system (DCS) responsible for vehicle stabilization.

Details are given of the NPS Phoenix vehicle implementation at the present time, together with experimental
validation of the concepts outlined using a simplified example mission. The paper ends with a listing of questions
and concerns for the evaluation of software controllers. A list of references is given for readers interested in this
subject.

Keywords: autonomous, hybrid control, Prolog, Petri nets, underwater vehicles, reactive, sonar, mission
coordination

than is currently the practice with ROVs today. All
this is to be achieved using low cost components and
maintaining as high a reliability as possible. The

1. Introduction

Spawned from the availability of small embedded

processors and the increasing capabilities of under-
water communications, small untethered vehicles are
expected to play a role in expanding our ability to sur-
vey ocean areas. Missions are expected to include
environmental monitoring, underwater inspection and
monitoring, geological survey as well as military mis-
sions in surveillance and mine countermeasures (Yuh,
1994; Moore, 1994; Curtin et al., 1993).

The key to the technology is to provide a vehi-
cle free from the constraints of a physical tether as
is currently used by offshore operators and ocean
scientists with Remotely Operated Vehicles (ROV’s)
(Newman and Stakes, 1994). It means that sufficient
power and intelligence must be provided onboard while
communications with the user will be at a higher level

relationship of a semi-autonomous/autonomous vehi-
cle to the ROV is an evolutionary one-made possible
by advances in acoustic communications and high en-
ergy power sources. Coupling a free swimming capa-
bility with moderate endurance and the ability to reli-
ably communicate between the vehicle and the human
user using acoustics (even at a low rate), enables the
command of robot actions from remote locations, and
the observation of its behavior and sensory data streams
without physical restriction.

The critical features that involve control technol-
ogy include, underwater navigation, high level com-
mand and control through acoustic communications,
precision motion control of the vehicle, and coordi-
nated control of vehicle/manipulator motion. Other
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important features are enhanced reliability through
autonomous adaptive resource reconfiguration and in-
built failure diagnostics with error recovery procedures
at all levels (Healey et al., 1991).

The development of intelligent control technology
for underwater robots lies, for the moment, at the inter-
section of Discrete Event Systems (DES) and Dynamic
Control of Continuous Systems (DCS) where system
theory is well developed for each alone but not both act-
ing together. It is not well understood how to formally
evaluate the performance of these combined systems
that are now being referred to as ‘Hybrid’ control sys-
tems {Antsaklis and Passino, 1993). Saridis (1989)
introduced the concept of ‘entropy’ for a multidimen-
sional performance index that could possibly be opti-
mized for hybrid systems. Computer Aided Design of
these systems has been proposed (Simon et al., 1993)
using a rigid robot manipulator as an example, over-
coming the lack of formal methods by using ORCAD,
aCAD package and the synchronous language ‘Esterel’
developed especially for handling DES as automata.

Software architectures for underwater vehicles—a
distinctly different problem from robotic manipula-
tors——involve vehicle stabilization issues, and have
been described and discussed in previous literature
(Hall and Adams, 1992; Albus, 1988; Sousa et al.,
1694}, but without any experimental validation. Few
detailed results have been quantified for the Odyssey
class of vehicle (Smith and Dunn, 1994; Bellingham
et al., 1994) although the Odyssey has performed un-
der ice and demonstrated homing behaviors into a cap-
ture net.

Some Hybrid systems are predominantly DES
and can be designed using state tables and finite
state machines, or recently, Petri net methodologies
{Cassandras,1993). Others are predominantly continu-
ous DCS with only a small component of discrete state
logic for which stability theory and well established
optimal control techniques are well suited (Friedland,
1986). ‘Hybrid’, in the context of this paper, deals with
the underwater robot control problem which is a true
mix of DES and DCS for which new design techniques
and evaluation methods are needed. In order to separate
the functionality of the system we note that the control
of'the sequencing of amission is a discrete event system
(DES) problem with the state transitions driven by con-
ditions arising from the completion of robot tasks or by
sensor based events, while the stabilization and control
of vehicle motion to mission derived trajectories and or
set points, is a traditional problem in dynamic control.
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The NASREM architecture (Albus and Quintero, 1990)
18 at one end of the spectrum of Hybnd controllers and
relies on a hierarchical system of planning. At the other
end is the layered control with subsumption (Brooks,
1986) modified with discrete state coordination as in
Bellingham and Consi (1991). The state transitions
arise from completion of robot tasks while the specifi-
cations of a mission phase generates plans for vehicle
motions in terms of either set points and control mode
activations. Itis the later that forms the basis for linking
the mission control {DES) at the top (Strategic Level)
to the vehicle control (DCS) at the bottom, (Execution
Level) and is embodied in a2 middle (Tactical Level) set
of control software functions.

We have thus defined a tri-level software control ar-
chitecture (—the Rational Behavior Model—(Byrnes
et al., 1992, 1993}) comprising Strategic, Tactical, and
Execution levels. The three levels separate the soft-
ware into easily modularized functions encompassing
cverything from logically intense discrete state tran-
sitioning through the interfacing of asynchronous data
updates with the real time synchronized controller func-
tions that stabilize the vehicle motion to set points or
trajectory commands.

The distinguishing features that identify each level
are

1. Strategic Level: This level in the architecture uses
a rule based language and is entirely boolean—
dealing only with the management of the disctete
state transitioning required to perform the mission
control. No numerical computations are done at
this level and no memory is required except for the
state of the mission. In principle, it determines what
needs to be done next.

2. Execution Level: This level contains all the code
functions that are required to stabilize the motion
control of the vehicle to a set of commands that
could be modes to be activated and servo set points
where that servo control functions can be complex
even including command overrides for reflexive be-
havior and adaptive control features. Many robot
controllers stop at this level.

3. Tactical Level:  This level is a set of functions that
are compiled as primitive predicates in the Strate-
gic Level Rules which open and close lines of com-
munications between the Strategic Level and the
Execution Level functions. They include the func-
tions that gather data from the servo levei and per-
form the necessary computations to determine if the



robot tasks are completed, perform the navigationat
planning functions, the sonar computations and
evaluates and sends appropriate setpoints and servo
mode activation flags to the Execution Level. In
this level, the computations are numerical but asyn-
chronous with respect to time. The distinguishing
feature between the Tactical and Execution Level
software is that of the need for hard real time com-
pletion in the Exection Level and asynchronous
completion in the Tactical Level.

In our controller architecture, the Strategic level uses
‘Prolog’ as a rule based mission control specification
language. Other DES control system design techniques
and implementation methods could be used, although,
it is the experience of the authors that none is more
convenient than using this existing language. Prolog
has the advantage of being an executable specification
language which can run in real time as we demonstrate
herein. The DES represented by the mission specifi-
cation could have been be translated in to ‘C’ code or
into ‘Ada’ or other languages such as Esterel (Simon
et al.,, 1993) and ‘Coral’ (Silva et al., 1994). How-
ever, in our use of Prolog, the Prolog inference engine
cycles through the predicate rules and in doing so, man-
ages the state transition aspects of mission control so
the need for logical verification of the control specifi-
cation disappears. It transitions the states in real time,
and generally develops the commands (activations) that
drive the vehicle through its mission. Error recovery
procedures from faitures in the mission tasks or the ve-
hicle subsystems are handled as transitions to ‘error’
states that ultimately provide commands to the servo
level control for appropriate recovery action.

The Tactical Level, currently written in C 1s set of
functions that are linked at compile time with the Pro-
log predicates and are designed to either return TRUE/
FALSE in response to queries—these are distinguished
by the prefix ‘Ask’ in the Prolog rules—or to activate
commands, distinguished by the prefix ‘Exec’. These
Tactical Level functions are also interfaced to the real
time Execution Level controller using asynchronous
communications and script type messages passed
through an ethernet socket with TCP/IP protocol.

The Execution Level controller is designed to com-
mand the vehicle subsystems appropriately for the
mode flags and set points sent on the socket and to
activate robot behaviors that correspond to those com-
manded. Communication from the Tactical Level to the
Execution Level takes place through a single socket.
By the design of this hierarchical control system, the
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Tactical Level runs asynchronously and rctains the
mission data file and the mission log file in global
memory. It sends the command scripts to the Exe-
cution Level and requests data for the evaluation of
state transitions. The architecture is a hybrid between
the true hierarchical control of NASREM (Albus and
Quintero, 1990) and purely reactive of subsumption
{Brooks, 1986) schemes. In this way, control of mis-
sion is retained, while reacting to unanticipated events
is also enabled.

‘While earlier results at NPS were obtained by work-
station simulations (Byrnes, 1993), we have now im-
plemented the tri-level hybrid control in the Phoenix
vehicle (Healey et al., 1994) with real time results in
complex missions.

The major contribution of this paper will be to de-
scribe some of many results of real time hybrid control
experiments with the NPS Phoenix vehicle, obtained
recently, in which all three levels of the control software
are active in real time. We will discuss our results with
respect 10 a simple example mission using the hovering
mode capabilities of the vehicle including coordination
of the activation of a high frequency profiling sonar as
part of the mission plan.

2, System Overview
The Vehicle

The NPS Phoenix, shown in Fig. 1, has been recently
outfitted with the tri-level controller and a sonar suite
consisting of a Datasonics PSA 900 sonar at 200 kHz.
to derive altitude above bottom signals, and two Tritech
high frequency sonars that are mechanically scannable
through 360 degrees. The ST1000is a 1024 kHz, 1.5 de-
gree pencil beam profiling sonar that is best suited for
measurment of the time of flight for the first stong re-
turn. The ST725 is a 725 kHz, 24 degree high by
2.5 degree wide beam scanning sonar which returns
intensity as a function of range in bins for any given
heading. Both sonars may be mechanically scanned
either through 360 degrees, or through a reduced sec-
tor, to concentrate on specific obstacles/targets around
the vehicle.

These devices may be addressed for control purposes
through a serial port where ASCII characters are used
to command primitive control functions such as ‘send
one ping and analyze the return structure’ (either range
to first return or intensity in a series of range bins),
or ‘turn by one step’. By issuing a sequence of such
commands, the sonar head may be made to self cenzer,
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Figure . The NPS Phoenix vehicle.

continuously rotate while pinging and return the data
stream, or to sweep over @ defined sector and return
the data stream.

Additionally, the vehicle has now been equipped
with cross body thrusters. Two vertical thrusters are
for heave and pitch control, and two transverse thrusiers
are for heading and lateral movement control. These
complement the two propulsion motors at the stern and
eight fin surfaces for flight control. The vehicle has
a dry intetior and a wet nose, a length of 2.13 meters
and a dry weight of 175 kg. Sufficient energy storage
(1100 Wh.) is provided by 4 lead acid gel batteries for
approximately 3 hours of operational testing.

Vehicle Primitives

In previous work (Healey and Marco, 1992a), way-
point following in a transit phase of a mission was
demonstrated in a swimming pool test area where stable
behaviors of the vehicle were demonstrated including

(a) Forward Speed Control,
{b) Fin_Steering
{c) Fin_Depth_Control
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(d) Waypoint_Following
(e) Botiom_Following, and
(f) Obstacle_Avoidance.

These control functions were implemented with (a)—(c)
and (f) running simultaneously, but subsumed by the
guidance laws implemented in (d), and, with (c} sub-
sumed by {¢). The control laws implemented have been
based on PD, and Sliding Mode methods as explained
in Healey and Marco (1992b).

Control laws for these functions are readily imple-
mented entirely in the Execution Level with digital
control algorithms running at 0.1 sec. update rate.
Now, however, new, more complex functions are be-
ing enabled using active control of thrusters and sonar.
These are,

(g) Submerge_and_Pitch_Control
(h) Heading_Control
(i) Longitudinal Positional Control
(j) Speed.Control using command generators
(k) Lateral Positiona}_Control
(I} Center Sonar
{m) Ping Sonar (Mode ()
(n) Ping and Rotate Sonar Clockwise (Mode +1}



{0) Ping and Rotate Sonar Counter-Clockwise
(Mode —1)

{p) Ping and Rotate Sonar Through a Sector (Mode 2)

{q) Initiate_Filter For_Sonar_Range
(Needed For Smoothed Range and Range Rate
Estimation)

(r) Reinitialize Filter

Most of these functions need a given subset of the
actuator system to be active under the operation of
either an open loop command or a feedback control
law. Some of the functions use orthogonal sets of ac-
tuators and may be activated without conflict. Some
use the same actuators to control different functions
and thus control laws may be additive. This means, for
example, that vertical thrusters may be used via con-
trol laws to control depth as well as pitch, and lateral
thrusters to control heading as well as lateral pesition
and side slip speed. In combination with propul-
sion motors, most functions including Submerge_
and _Pitch_Control, Longitudinal_Speed_Control and
Longitudinal Position_Control, as well as Head-
ing_Control, may now be commanded reliably. Head-
ing_Control, Submerge _and_Pitch_Control, and virtu-
ally any multiple combination of (a) te (r) above are
available to the extent that they do not cause a conflict
of actuator control or sensor usage.

Orthogonal Behaviors

Orthogonal behaviors are defined as those control be-
haviars that use non-interacting subsets of actuators.
Even though each may use some common sensory data,
orthogonal behavior control functions may be activated
simultaneously without conflict. An example would
be Heading_Control (using lateral thrusters), Longi-
tudinal _Position_Control (using the propusion motors}
and Center_Sonar. Non-orthogonal behaviors use in-
tersecting sets of actuators for control of different er-
ror functions and thus control laws can be built up
from linear combinations of individual control laws—
as used for combined heave and pitch contrel using
vertical thrusters.

Activation of orthogonal behaviors are instituted us-
ing a script composed of flags and set points that are a
way of communicating between Tactical Level C func-
tions and the real time control loop of the Execution
Level. At each pass through the loop, a read is made
from the communications socket and an if-else struc-
ture is used to determine which set of sensors, actuators
and control laws are to be activated during the compu-
tation cycle. The same technique is used to flag the
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activation of sonars, and filtering actions, and simi-
larly for flags to indicate which data streams are to be
written in return.

Reactive Behavior Implementation

Reactive behavior in our controller is handled three
ways, similarly to that done in the ORCAD design
(Simon et al., 1993).

1. In the Execution Level control loop through com-
mand overrides following a sensor read, as, for
instance, a new abstacle detection requiring an
emergency surface or obstacle avoidance (flinch)
response,

2. At the Tactical Level, reactive error recovery can
be handled by resetting key parameters associated
with control signal evaluations. An example is the
resetting of a control gain or the inclusion of inte-
gral control if a particular error function cannot be
stabilized,

3. Reactive behavior is also handled at the Strate-
gic Level for catastrophic faults by transitioning to
states that command fatal error recovery procedures
such as to surface if, for example, a particular mis-
sion phase is not completed after a pre-specified
time out and all other techniques have been ex-
hausted.

In the results described here, reactive behavior is
built in at the Strategic Level by time and space traps
using time out calls. If an allocated time is exceeded,
the mission phase fails and the vehicle is commanded to
surface. Control overrides are built into the Execution
Level to surface the vehicle if battery power is too low
or if a leak is detected.

3. The Control Network

The control system, illustrated in its simplest form in
Fig. 2, is currently implemented in hardware using
three networked processors. All Execution Level soft-
ware is written in C and runs on a Gespac M68030
processor in a separate card cage inside the boat. Con-
nected in the same card cage is an ethernet card and an
array of real time interfacing devices for communica-
tions to sensors and actuators indicated in the details of
Fig. 3. The Execution Level control code containing a
set of functions in a compiled module called ‘exec’ is
downloaded first, opening the communications socket
on the Gespac side and waiting for the higher level
controller to start.
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Figure 2. Diagram of the Phoenix networked controller.

Strategic Level

The Strategic Level Prolog rules are compiled and
linked together with the supporting Tactical Levet C
language functions into the single executable process
called ‘Mission_Control’, that is run in a Sun Mi-
crosystems Sparc4 laptop computer and linked through
an ethernet socket to the Gespac processor (socket ‘A’ in
Fig. 2). Starting ‘Mission_Control’ enables commu-
nications between both Sparc and Gespac processes.

All vehicle control functions, with the exception of
the transmission of sonar imaging data, communicate
by message passing through that socket. The Strate-
gic Level Prolog is divided into two parts—first the
generic mission controller in Table 1, and secondly,
the phase level detail in Tables 2—4. For clarity, the
higher level rules are highlighted in bold type, the C
functions in italics, and any user defined or built-in
Prolog predicates are in plain text. The rule set is
first compiled and then run in the interpreter by enter-
ing the query ‘execute_mission.” The example mission
outlined in the tables below consists of three phases:
vehicle initialization; submerging to a specified depth
while maintaining a heading command, and sweeping
the profiling sonar head 360 degrees while still control-
ling to depth and heading. This is a deliberately sim-
plified mission for clarity of explanation. Many more
complex missions have been run utilizing the principles
outlined here.

Referring to the Prolog code in Table 1, the rule head
‘execute_mission’ will be satisfied, and hence the mis-
sion completed if the predicates ‘initialize_mission’,
‘execute_phase’, and ‘done’ all evaluate TRUE. Once
‘ood(‘start_networks’, X}’ completes, phase | is as-
serted to be the current phase (ie., set to TRUE),
then the entire rule body of ‘initialize_mission’ is
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Figure 3. Structure of the executicon level software/hardware.

Software Control Modules



Autonomous Underwater Vehicles

Tuble 1. Generic mission controller.

done - current_phase{mission_abort)

done - current_phase{mission.complete)

execute_mission ;- ini repeat, execute_phase, done

initialize_mission :- eed(‘starf_networks’, X}, asserta(current_phase(1}), asserta(complete(0)), asserta(abort(Q))
execute_phase - current_phase(X), execute_phase(X), next_phase(X),!

Tuble 2. Phase 1 (initialize vehicle systems).

execute_phase(1) :- exec fait_vehicle(X), exec_start timer(X), repeat, phase_completed(l)
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phase_completed(1) :- ask_init_vehicle_done(X), X==1, asserta(complete(1))

phase_completed(1) :- ask_time_out(X), X==1, asserta(abort(1))

next_phase(1) :- complete(l), retract{current_phase(1)), asserta(curreni_phase(2))

next_phase(1) :- abort({1), retract{current_phase(1)), asserta(current_phase(mission_abort))

Table 3. Phase 2 (submerge to depth and rotate to heading).

execute_phase(2) :- exec_gel_setpoints(X), exec submerge(X), X==1, erec_rotate(X), X==1,

exec_start_timer(X), repeat,

phase_completed(2}

phase_completed(2) :- ask_depth_reached(X), X==\, ask_keading_reached(X), X==1, asserta(complete(2))
phase_completed(2) :- ask_time_out(X), X=1, exec_surface(X), repeat, asksurface_reached(X), X==1,

asserta(abort(2))

phase_completed(2) :- ask_sys_problem(X), X==1, exec_surfizce(X), repeat, ask_surfreached(X), X==1,

asserta(abort(2))

next_phase(2) :- complete(2}, retract(current.phase(2)), asserta(current_phase(3))

next_phase(2) :- abort(2), retract(current_phase(2)), asserta(current_phase(mission_abort))

Tabie 4. Phase 3 (sweep sonar).

execute_phase(3) :- exec_get_setpoints(X),  exec_submerge(X), X==1, exec_rotate(X), X==1,

exec_sel_sonar_mode(X), exec_start_timer(X),

phase_completed(3)

repeat,

phase_completed(3} :- ask_sonar_sweep.complete(X), X==1, asserta(complete(3))

phase_completed(3) :- asktime_out(X), X==1, exec_surface(X), repeat, ask_surfoce_reached(X), X==1,

asserta(abort(3)}

phase_completed(3) :- ask_sys problem(X), X==1, exec_surface(X), repeat, ask_surface_reached(X), X==1,

asserta(abort(3)}

next_phase(3) :- complete(3), retract{current_phase(3)), asserta(current_phase(mission_complete))

next_phase(3) :- abor(3), retract{current_phase(3)), asserta{current_phase(mission_abort})

evaluated as TRUE. This action enables the control to
enter a repeat loop which executes the predicate ‘exe-
cute_phase’ attempting to evaluate each predicate cur-
rent_phase(X), execute_phase(X), and next_phase(X),
as X assumes the values 1 through 3 in sequential order.
This particular mission has only three phases, but is ex-
pandable 1o include as many phases as desired.

Each phase includes a ‘repeat’ predicate so that the
rules for phase completion are evaluated repetitively
until one of the rules is TRUE. With the exception of
vehicle initialization, each phase can terminate in one

of three ways:

1. Normal Completion.
Next Action: (Execute Next Phase)
2. Abort Due to Time Out.
Next Action: (Surface Immediately)
3. Abort Due to System Problem.
Next Action: (Surface Immediately)

If phase X completes normally, ‘complete(X) is
asserted and X is incremented by one to execute the
next phase. Normal completion usually indicates that
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Tuble 1. Generic mission controller.

done - current_phase{mission_abort)

done - current_phase{mission.complete)

execute_mission ;- ini repeat, execute_phase, done

initialize_mission :- eed(‘starf_networks’, X}, asserta(current_phase(1}), asserta(complete(0)), asserta(abort(Q))
execute_phase - current_phase(X), execute_phase(X), next_phase(X),!

Tuble 2. Phase 1 (initialize vehicle systems).

execute_phase(1) :- exec fait_vehicle(X), exec_start timer(X), repeat, phase_completed(l)
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phase_completed(1) :- ask_init_vehicle_done(X), X==1, asserta(complete(1))

phase_completed(1) :- ask_time_out(X), X==1, asserta(abort(1))

next_phase(1) :- complete(l), retract{current_phase(1)), asserta(curreni_phase(2))

next_phase(1) :- abort({1), retract{current_phase(1)), asserta(current_phase(mission_abort))

Table 3. Phase 2 (submerge to depth and rotate to heading).

execute_phase(2) :- exec_gel_setpoints(X), exec submerge(X), X==1, erec_rotate(X), X==1,

exec_start_timer(X), repeat,

phase_completed(2}

phase_completed(2) :- ask_depth_reached(X), X==\, ask_keading_reached(X), X==1, asserta(complete(2))
phase_completed(2) :- ask_time_out(X), X=1, exec_surface(X), repeat, asksurface_reached(X), X==1,

asserta(abort(2))

phase_completed(2) :- ask_sys_problem(X), X==1, exec_surfizce(X), repeat, ask_surfreached(X), X==1,

asserta(abort(2))

next_phase(2) :- complete(2}, retract(current.phase(2)), asserta(current_phase(3))

next_phase(2) :- abort(2), retract(current_phase(2)), asserta(current_phase(mission_abort))

Tabie 4. Phase 3 (sweep sonar).

execute_phase(3) :- exec_get_setpoints(X),  exec_submerge(X), X==1, exec_rotate(X), X==1,

exec_sel_sonar_mode(X), exec_start_timer(X),

phase_completed(3)

repeat,

phase_completed(3} :- ask_sonar_sweep.complete(X), X==1, asserta(complete(3))

phase_completed(3) :- asktime_out(X), X==1, exec_surface(X), repeat, ask_surfoce_reached(X), X==1,

asserta(abort(3)}

phase_completed(3) :- ask_sys problem(X), X==1, exec_surface(X), repeat, ask_surface_reached(X), X==1,

asserta(abort(3)}

next_phase(3) :- complete(3), retract{current_phase(3)), asserta(current_phase(mission_complete))

next_phase(3) :- abor(3), retract{current_phase(3)), asserta{current_phase(mission_abort})

evaluated as TRUE. This action enables the control to
enter a repeat loop which executes the predicate ‘exe-
cute_phase’ attempting to evaluate each predicate cur-
rent_phase(X), execute_phase(X), and next_phase(X),
as X assumes the values 1 through 3 in sequential order.
This particular mission has only three phases, but is ex-
pandable 1o include as many phases as desired.

Each phase includes a ‘repeat’ predicate so that the
rules for phase completion are evaluated repetitively
until one of the rules is TRUE. With the exception of
vehicle initialization, each phase can terminate in one

of three ways:

1. Normal Completion.
Next Action: (Execute Next Phase)
2. Abort Due to Time Out.
Next Action: (Surface Immediately)
3. Abort Due to System Problem.
Next Action: (Surface Immediately)

If phase X completes normally, ‘complete(X) is
asserted and X is incremented by one to execute the
next phase. Normal completion usually indicates that
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a commanded set point or task has been accomplished
and the vehicle is ready to start the next phase. In
the case of phase 2, this mcans that the commanded
depth and heading has been achieved. If a time out or
a system problem occurs, the vehicle is commanded
to surface immediately and a mission abort for phase
X is asscrted after the surface is reached. A time out
indicates that a set point or task is taking too much
time to complete and with our current version of er-
ror reccovery the mission phase is aborted and also the
cntire mission. System problems can cover a variety
malfunctions, sensor failures, thruster failures, or any
type of hardware problem, which arc assumed to be
catastrophic requiring an entire mission abort.

After each phase executes, the predicate ‘done’ is
evaluated. If the next phase is commanded, ‘done’ tails
and the cycle continues, if however a mission abort is
asserted or the mission completes, ‘done’ is satisfied
and ‘cxecute_mission’ evaluates TRUE and the entire
mission 1s finished.

Tasks that arc required to be performed in succes-
sive phases are recommanded as shown by the calls
“..exec_submerge(X ), X==1, exec _rofate(X), X==1.
... which appear in Phase 2 and 3 (Table 3 and 4). In
this way new set points can be entered for each phase.
Generally, control mode commands are lett active un-
til changed although “kill’ rules can be used to stop
actions such as filters etc.

Relations berween Prolog and Petri Nets

So {ar the mission controller has been represented with
Prolog. While this is the actual language that is used to
drive the Strategic Level in real time, there also exists
a method to graphically model discrete mission events.
These models are referred to as Petri nets {Murata,
1989), and can sometimes give a more clear and intu-
itive representation for a Strategic Level mission con-
troller. [t should be pointed out that using a Petri nct
graph is not intended to replace the Prolog code, but
rather provides a differcnt representation of the mission
controller. The following sections show how Prolog
code may be written given a Petri net graph, followed
by a Petri net analog of the Prolog mission code out-
lined before. It should be noted that cur use of Prolog
is greatly simplified and so are the Petri net representa-
tions, being limited Lo single token places correspond-
ing to the TRUE/FALSE evaluations of the predicate
rules.

Three example Petri net graphs are shown in Figs. 4-
&. The circles denoted by Py, P;, ..., P, are the states
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ta

Figure 4. Petrinet graph (or Examgle 1.

ts
Figure 5. Petri net graph for Example 2.

f ty

Figure 6. Petri net graph for Example 3.

or places of the Petri net graph and the bars labeled
t;, ty, ..., t, are the transitions, where a token en-
lers a place whenever a transition is fired. The ba-
sic technique for writing Prolog code from an existing
Petri net is manually done and not optimized, but to



Tuble 5. Prolog for Example 1.

Imission_complete :- repeat, done

done - p2

done - p3

tl

pl:-tl

p2 :- pl, ask( 12(X)°, X), X==1

p3 - pl, ask( ‘t3(X)’, X), X==1

ask(Q,A) :- write(Q), write(*?’}, nl, read(A), nl

Tuble 6, Prolog for Example 2.

mission_complete :- repeat, done

done :- p2

tl

pl:-tl

p2 - pl, ask( ‘(2(X)", X), X==1

p2 :- pl, ask( "3(X)", X), X==1

p2:-pl, ask( 4(X)', X). X==

p2 - ask( 15(X)".X), X==

ask((Q,A) :- write((Q),write('?"), nl, read(A)nl

Table 7. Prolog for Example 3.

mission_complete :- repeat, done

done :- p3

pl - ask( ‘t1(X)’, X), X=1

p2 :- ask( 12(X)", ¥), X==1

p3 - pl, p2, ask( "t3(X)’, X), X==1
ask(Q.A) - write(Q),write(*?"), nl, read(A).nl

start at the terminal state(s) and work back towards
the initial state of the graph (following the backward
chaining nature of Prolog). While doing this we de-
fine ‘place’ and ‘transition’ predicates, where ‘place’
predicates evaluate TRUE if a token resides there, and
a ‘transition’ predicate is TRUE if it is enabled and the
transition has fired.

Using this approach, Prolog code has been gen-
erated for three example Petri net graphs (Tables 5
through 7). Each Prolog example is driven by executing
‘mission_complete’ which is the rule to be satisfied
for completion with the predicate ‘done’ repeatedly
queried until TRUE. The “place’ and ‘transition’ pred-
icates are denoted by p(n) and r(r) respectively. The
*ask’ predicate shown in these examples allows the user
to interactively activate the firing of a transition by typ-
ing a | for TRUE or 0 for False.
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The Petri net of Example 1 shows two terminal
states, P> and P3, which implies that for completion,
two instances of the Prolog ‘done’ predicate must be
defined, (done :- p2. or done :- p3.). Starting with the
terminal states and working back, we must determine
what conditions must be satisfied to reach these states.
The precondition for a transition to either P; or P; re-
quires a token in place P;. This is assured since the
tule for transition t; is declared to be TRUE. At this
point both transitions t; and t; are ‘enabled’ and either
may fire to move the token to terminal states P or Ps.

Example 2 is an OR structure with a single terminal
state P> (done :- p2.) which may be reached one of
four ways. The first three through transitions t;, t3,
or t4, and a fourth, directly through ts. This requires
the Prolog to have four instances of the rule P;, which
reflects the OR nature of the Petri net.

Example 3 is an AND structure with a single termi-
nal place, P (done :- p3.), where both places P, and
P, must be occupied to enable transition t;. This is
described in Prolog by the AND (pl, p2) in the rule
body of p3.

In ourmission, completing a phase normally, a phase
time out, or having a system problem are all examples
of a discrete event. In a Petri net graph, these are the
transitions, the places represent the execution of mis-
sion commands such as ‘submerge’, ‘rotate’, etc. A
Prolog ‘repeat’ loop is also considered to be a place
with it’s transition predicates continually evaluated.
Fig. 7 shows the Petri net graph for the mission, which
starts with a transition at t; (equivalent to querying the
rule ‘execute_mission’). The places P, P; and P; rep-
resent the Prolog phases |, 2 and 3 and are expanded
in detail in Figs. 8, 9 and 10 respectively. The transi-
tions t;, and ts through t;g denoted with a thick line are
only evaluated if enabled, and fired when the associated
predicate becomes TRUE, (X==1). A transition drawn
with athin line fires as soon it is enabled. In Petri netno-
tation, we are using a ‘timed’ graph since there are def-
inite time delays between the enabling and subsequent
firing of some—but not all—transitions. Referring to
the expanded Petri net graph of phase 2 in Fig. 9, the
transition ¢; will fire when the rule ‘execute_phase(2)’
is executed. Once this has occured, the predicates rep-
resented by Py, Pos, and Py are all executed and upon
completion, the transition tz; fires immediately and the
place P,5 becomes active. At this point the transitions
ts, t7, t3, and ta4 are enabled and the predicates asso-
ciated with them are evaluated repetitively until one of
them is TRUE, at which time the respective transition
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initinlize_vehicle
ask_time_out(X) I

ts

phase(1) complete

X=1 i

ask_sys_problem(xl I

I

execute_phase(2)
ty

ask_time_omi(X)

phase(2} complete
L§] ts

ask_time_oul(X)

execute_phase(3}
iy

ask_sys_prnhlem(X)J

exec_surface

‘ phase(3) complete I
7]

mission_complete

Figure 7. Petri net graph for generic mission.

will fire. If a time out or system problem does not oc-
cur and the desired depth is reached, ta; will fire, and
the predicate “ask_heading_reached’ must also be eval-
uated repetitively. Since the Prolog repeat continues
to evaluate transitions, ty; must return a token to Pas
causing s, t7, ty3, and ty4 to remain enabled and eval-
uated, When the heading is reached, ty, is fired, tys
is enabled, and fires immediately completing phase 2
normally. A similar structure of phase completion and
crror Tecovery is used in phase 3 as well, which can
serve as a template for most any mission phase.

If a time out or system problem occurs in either
phase, it is clearly shown that one of the transitions
t through to will fire and the ‘exec_surface’ predicate
(place Ps) will be executed. In this state the predi-
cate ‘ask_surf_reached’ is continually queried until the

104

ask_sucf_reached(X)

surface is reached at which time the mission is aborted
(Ps). If all goes well and the objectives of phases 2 and
3 are met, the place P4 {mission_complete) is reached
and the mission terminates normally.

Tactical Level Software

The Tactical Level of the control system contains all
the C functions that are compiled as predicates in the
Strategic Level rules, and performs the computations
upon which the vehicle commands and transitions are
based. Additionally, a second Sparc process called
the ‘Sonar Manager’ is opened which runs asyn-
chronously in the Sparc and with equal priority to the
‘Mission_Control’. This process is linked through a
separate socket (‘B in Fig. 2) to the Gespac for the
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Figure 8. Petri net graph for phase 1.

ask_time_oui(X)

execute_phase(1)
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vehicle

ask_time_out(X)

complete{1)

fromt,
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Figure 9. Petri net graph for phase 2.
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fromt3

execute_phase(3)

exec,

_ exec_
submerge

timer

ec_ exer_sel_
tate sonar_mode

ask_time_out(X)
oty

ask_sys_problem(X)
toty

ask_sonar_sweep_complete(X)
ta
X==

complete(3)

toty

Figure 10.  Petri net graph for phase 3.

purpose of the reception and handling of sonar imag-
ing data. The ‘Sonar Manager® captures data that is
sent out from the Execution Level as soon as it has
been acquired, and then processes and passes the data
to be displayed on the IRIS Graphics workstation for
visualization purposes.

The introduction of the additional process called
‘Sonar Manager’ and it’s separation from the ‘Mis-
sion_Control’ Tactical Level functions has been found
to be important and a necessary first step toward a more
general Concurrent Tactical Level that was foreseen by
the earlier RBM architecture (Byrmes et al., 1993} and
explained recently by Kwak and Thornton (1994). The
need for concurrency of multiple processes lies funda-
mentally with the fact that sonar data is obtained asyn-
chronously with bounded but unknown latency and the
servo control functions cannot wait for the sonar port
data to arrive. While it is perfectly normal to send
contrel set point commands asynchronously to stable
control loops, waiting for sonar returns could hold up
the servicing of the inner servo loop commands to ac-
tuators. Thus in our solution to this problem, we have
defined the additional ‘Sonar Manager’ process to al-
ways read the socket onto which sonar data is written so
that it is immediately free for another sonar write with-
out delay and the servo loop is made independent of
direct involvement with the sonar. As an unpleasant
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alternative, we have found that without the ‘Sonar
Manager’, all the Tactical Level functions would have
to be modified to include a check to read sonar data.
This would have been a cumbersome addition of much
unnecessary code writing.

Transition Criteria

Most control phase transitions of the Phoenix are event
based, meaning that a certain set of criteria must be met
in order for a transition to occur. A commeon example
of this is when a position set point is sent to the vehi-
cle controllers and reached. A method of determining
whether the vehicle has indeed reached this point must
be programmed into the control logic. Measuring the
position error alone and declaring the maneuver com-
plete when this error is small is not sufficient. This
is because the vehicle could be overshooting the com-
manded position and simply passing through the set
point. Therefore, not only must the position error be
small but the rate error must aiso be smalt. This dual
criteria can be expressed mathematically as a positive
definite, linear combination of the position error e and
the position rate error é. We use,

g = Weley| + wiéxl (1)

where w, and w, are positive weights for the position
and rate errors respectively. This equation allows a
minimum value of o, denoted oy, to be specified defin-
ing a threshold for the combination of errors which
can be set relatively large when precision control is
not required or low for extremely precise positioning.
Once o drops below g, the maneuver is declared com-
plete and a transition to the next control phase may
oceur.

When noisy sensots are used, the noise prevents o
from settling enough to determine an accurate measure-
ment for the transition, and the use of Eq. (1) alone has
shown to be unsatisfactory. The signal can be smoothed
by filtering o through a first order digital filter of the
form

Trgap =e Torm+(1—eT a2

where g 1s the filtered form of o, 7 is the time constant
of the filter, and T is the sampling time. The condi-
tion for transition can be shown diagrammatically in
Fig. 11, which indicates that the signal for transition,
s, is 1 (TRUE) for oy < &g or 0(FALSE) for oy >0 5.
As an example, the function ‘ask_depth_reached(X)’,
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Figare 11, Transition signal condition.

performs the calculations above and returns s. Other
dynamic error and time based signals are computed
similarly.

FExecution Level Software

The structure of the Execution Level software is illus-
trated by Fig. 3 which indicates that it is composed of
software at the hardware interface (software drivers) as
well as software for vehicle control. After intializa-
tion of power systems and sonars, and the basic driver
settings, the FIA card pins that control the on/eff fea-
ture of power supplies, thruster power, screw power,
and sonar power, a simple timing loop is entered and
reentered at a fixed update rate (in our case 0.1 sec.)
during which the following takes place,

1. read the socket ‘A’ for behavior based mode com-
mand flags and control set points,

2. read all sensors,

3. select appropriate ‘C’ code control functions for
computing and sending control values to actuators,
using an if-else structure for distinguishing the com-
mands,

4, write selected data to memory or sockets ‘A’ or ‘B’
as appropriate, and

5. as appropriate, send signals to the Sonars to ping
and rotate,

6. check time for any time based events and wait for
the next timing interrupt to maintain integrity of the
digital control loop.

Specific control laws as built into callable mod-
ules of code are easily selected according to the com-
munication flags, provided that they exist in the first
place.

An example of the 3 levels of control interactions
can be seen from the following code fragments.
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STRATEGIC LEVEL (PROLOG)

...exec_submerge(X), ...

...repeat, ask_depth_reached(X),...

TACTICAL LEVEL (C)

int exec_submerge()

{

]

sprintf(command sent,“%s %f %f",“SUBMERGE”, z_setpt[current_setpt_index],
theta_setpt[current_setpt_index]); /* Command vehicle to Submerge to z_setpt */

write_to_execution(command_sent};

return{ TRUE);

int ask_depth_reached()

{

sprintficommand_sent,“%s”,“GET_DEPTH_INFO”);

write_to_execution(command_sent); /* Request Depth Information from Execution Level */
read_from_execution(&command read[0]);  /* Read Reply from Execution Level, blocking socket */

sscanf(command read, “%F %F",&z_est, &sigma_zf);

if( sigma_zf < sigma_zf_min[current_setpt_index] )
{

return{ TRUE): /* Within Minimum Error */
}
else
{

return{FALSE); /* Cutside Minimum Error */
H

EXECUTION LEVEL (C)

while (shutdown_signal received == FALSE)

{

/* Read Command (If Any) From Tactical Level */

read _status = read_from_tactical(&command read[0]); /* non-blocking socket read */

iftread_status > 0}

{
sscanf(command_read, “%s”,&command[0]}; /* Extract the Command Only! */
/* Switch 10 the Appropriate Command Parser ¥/
if(!stremp(command,”SUBMERGE"))
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sscanf{command_read, “%s %F %F”, &command[0],&z.com,&theta_com);
DEPTH_AND_PITCH_CONTROL = TRUE;

}
else if(!stremp(command, “GET_DEPTH_INFO™})

{

sprintf(command_sent,"“%f %f”, z_est,sigma_zf);

write_to_sun(command_sent);
}

}
/* Control Block */

iftDEPTH-AND_PITCH_.CONTROL)
{

}

submerge_and_pitch_centrol(z_com,theta _com);

This shows how the Strategic Level communicates
with the Tactical Level which in turn sends command
strings to the execution level for submerging control.
When the Prolog predicate ‘exec_submerge(X)’ is ex-
ecuted, the “C” function in the Tactical Level is called
which writes the command SUBMEGE along with the
depth and pitch angle set point for the particular phase
to the Execution Level. This function then completes
and having sent the command to the execution level
teturns a state of TRUE. At this time the Execution
Level extracts which command has been sent and pro-
gram control is switched to the appropriate command
parser block. Since SUBMERGE was sent, the com-
mand parser expects two set points, depth and piich
angle. Once this command has been received. a flag
DEPTH_AND_PITCH_CONTROL is set TRUE which
activates this control function and will remain in effect
until commanded otherwise.

Socket Communications (Tactical/Execution Level)

Careful attention must be paid to both sides of a com-
munications socket when dealing with synchronous
and asynchronous processes. Reading from a ‘block-
ing’ socket causes execution to pause until data is re-
ceived. In contrast to that, a ‘non-blocking’ socket
allows execution to proceed if no data is waiting to
be read. For synchronous real time execution of dy-
namic processes attempting to make a read every time
step, a ‘non-blocking’ socket is a requirement. Since
the Tactical Level sends commands and receives data
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asynchronously, while the Execution Level must run
synchronously at 10 Hz., the UNIX side of socket A
is configured to be ‘blocking’, while the OS-9 side is
‘non-blocking’. By contrast, eight different types of
socket communications are used by the Esterel lan-
guage mentioned previously (Simon et al., 1993).

Execution of the predicate ‘ask_depth_reached(X}’
sends a request to the Execution Level for depth infor-
mation (GET_DEPTH_INFO). The command is parsed
in exactly the same way as before except that the Tac-
tical Level function waits (‘blocking’ socket) for the
Execution Level to return the values of depth and fil-
tered depth error. A comparison is then made between
the current filtered error, o5, and the prespecified min-
imum, o,¢9. and the function returns TRUE or FALSE
as appropriate.

Human Supervision

Human supervisory control has not been built into the
control system to date. This does not mean that it is
impossible to do. In fact, user inquiry for the state of
the vehicle can easily be incorporated into a tactical
level function that reads an acoustic modem and waits
for messages to be received. The Strategic Level pred-
icates can include a predicate that asks if a user mes-
sage has been received. The Tactical Level message
can be parsed into commands that could call any of the
vehicle primatives directly—or specifically—request
data to be changed. While the architecture supports
supervisery control, that is not the main focus of our
work to date.



4. Results from Experimental Mission

The mission described in this paper was performed in
the NPS§ hover tank which measures 6.0 by 6.0 me-
ters square and 1.8 meters deep. During execution all
pertinent data was collected, including depth, head-
ing, thruster motor speed, etc. During phases where
the sonar is active, the range and heading angle of the
sonar head was recorded. A log file of mission status
messages, a time history of the depth response of all
three phases, and a plot of the profiling sonar image of
the tank was obtained.

While the mission executes, the process running the
Strategic Level displays status messages to the screen,
while others are written by the Tactical Level C func-
tions. Stored in a log file for each mission, the fol-
lowing was obtained with messages from the Strategic
Level in upper case and in lower case for the Tactical
Level.

?- execute_mission.

INITIALIZE MISSION!

START NETWORK!

READ MISSION FILE!

2
60.00.00.02.50.00.000000.00.10.00.00.1

0000000
60.00.00.0250.00.000000.00.10.00.00.1

60.0 1 0.0 0.0 : mission file
Missicon File opened successfully.

START PHASE 1!

INITIALEZE VEHICLE!

INITIALIZE BOARDS!

TURN ON PROP POWER!

TURN ON SONAR POWER!

UNCAGE DIRECTIONAL GYROSCOPE!
DIRECTIONAL GYROSCOPE UNCAGED.
ZEROING SENSCRS.

INITIALIZE ST1000 SONAR!
INITIALIZATION DONE.

PHASE 1| COMPLETE.

START PHASE 2!
current_setpt.index = 0
SUBMERGE!

z_setpt = 2.5 theta_setpt = 0.0

ROTATE!
psi_setpt = 0.0
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START_TIMER!

DEPTH TRANSITION.

Depth @ transition = 2.401626
z_dot @ switch = 0.004895
sigma_zf @ transition = 0.093

HEADING TRANSITION.
Heading @ switch = —0.033422
r @ switch = 0.003719
sigma_psif @ transition = 0.084
PHASE 2 COMPLETE.

START PHASE 3!

START SWEEP TIMER!

SET SONAR MODE!

START TIMER!

SONAR SWEEP COMPLETE.
PHASE 3 COMPLETE.

DIS-CONNECT NETWORKS!
MISSION COMPLETE.

yes
B

Note: The log file uses units of feet, feet/sec, radians,
and radians/sec.

The commanded depth was 0.762 m (2.5 feet) with
a filtered error threshold 0.03 m (0.1 feet). The set
points for both pitch and heading angle were 0.0 ra-
dians, and the sonar was set to continuously sweep
clockwise (Mode +1) for 60.0 seconds in phase 3. Af-
ter the network connections to the various processes
were established, the mission file was read by the Tac-
tical Level. Although this was a three phase mission,
only two rows of set points were required. Vehicle
initialization does not require set point data.

The first column of the mission data file is the time
out for a phase (seconds), the next six columns are the
set points for longitudinal, lateral, depth, rell, piich,
and heading positions. The second set of six celumns
are their respective filtered error thresholds, o4, and
the last four columns contain the duration of the sonar
sweep, the sweep mode, scan direction, and sweep
width. The log file showed the status of the vari-
ous transitions and numerical values for certain vari-
ables of interest. Upon completion of phase 3, the
network connections are terminated and the mission
completes.
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Figure 12.  Vehicle depth response for all three phases.

Figure 12 shows the time history of the depth and
depth rate response. The lower trace shows the behav-
ior of the filtered depth error, o, and the threshold for
the filtered error, o0, The time axis includes a short
time for initialization, and in phase 2 it can be seen that
a,y starts to reduce as the vehicle begins to submerge at
7). The transition to phase 3 is triggered as o7 reaches
a0 (T2), when the sonar is activated and an image of
the test tank walls and a cylindrical objectis recorded as
shown by Fig. 13. While this phase is active, the depth
controller continues to operate and reduces the error
beyond the threshold of 0.03 m to nearly zero. Once
the sonar sweep time is over, the mission terminates at
time Ts.

It is not an easy task to evaluate a given control
system architecture. The theoretical design for sta-
bility and robustness leads to sclection of parameters
that are used in the control functions of the Execution
Level. We are going beyond that now and are inter-
ested in the organization of control software. Some
software controllers will be successful for fixed pur-
pose lasks, but here, we have a multipurpose flexible
control requirement and, because we are talking about
conirol software, we are led to ask the following ques-
tions,
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Figure I3, Sonar image of test tank.

1. Does the controller permit easy evaluation of re-
sponse and change to control parameters o ‘tune’
the low level servos?



2. Can this be done while testing is ongoing in real
time?

3. Can new sensors be added to the vehicle with little
change to the control software?

4. What levels of code and how many functions have
10 be changed for this new sensor to be added?

5. How many rules (code statements) must be changed
if the mission is altered to eliminate, or add, a new
phase?

6. How is the control code modified to test just the per-
formance of a particular existing sensor or actuator
set?

7. How easy is it to change the data record for a dif-
ferent set of sensors?

8. How easy is it to change the conditions that define
the transition signals?

These questions are currently being evaluated. In par-
ticular, this paper deals with a mission that has three
phases; the initialization, the submergence, and the
sonar mapping phases. Although the mission here was
simplified so that the details of the code and results
could be more clearly presented, other more complex
missions have been performed successfully.

Conclusion

The conclusion of our work to date has indicated that
complex behavior can be readily coordinated through
Strategic Level rules, that are easily modified. These
acl as state transitioning mechanisms and the commu-
nication through Tactical Level software to the Execu-
tion Level controllers is a simple but convenient way
of commanding stable responses of the vehicle. The
design of well behaved control laws and functions at
the Execution Level is essential as a primary part of the
design and is affected through careful attention to the
digital control loop design. Reactivity, failure recov-
ery, and even human interfacing within the controller
can take place at any level.
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